
CO R R E S P O N D E N C E Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativ​ecommon​s.or​g/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http:​​​//creativecommo​ns.​​org/publicdo​main​/​zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Kang et al. Experimental Hematology & Oncology          (2024) 13:123 
https://doi.org/10.1186/s40164-024-00586-4

Experimental Hematology & 
Oncology

†HyunJun Kang, Melissa Valerio and Jia Feng contributed equally to 
this work.

*Correspondence:
Linda Malkas
lmalkas@coh.org
Guido Marcucci
gmarcucci@coh.org
Le Xuan Truong Nguyen
lenguyen@coh.org
1Department of Hematologic Malignancies Translational Science, 
Beckman Research Institute and City of Hope National Medical Center, 
Duarte, CA, USA

2Department of Hematology, Peking University Shenzhen Hospital, 
Shenzhen, China
3Department of Molecular Diagnostics & Experimental Therapeutics, 
Beckman Research Institute of City of Hope, Duarte, CA, USA
4Early Detection and Prevention Division, Translational Genomics 
Research Institute, Phoenix, AZ, USA
5Beckman Research Institute, City of Hope National Medical Center, 
Duarte, CA, USA
6Department of Molecular Medicine, City of Hope National Medical 
Center, Duarte, CA, USA
7City of Hope, Duarte, CA 91010, USA

Abstract
Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells, 
supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral 
compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth 
in AML cell lines and primary CD34 + CD38 − blasts (LSC-enriched) in vitro while sparing normal hematopoietic 
stem cells (HSCs). In vivo, AOH-treated mice demonstrated prolonged survival compared to controls (50 vs. 35 days; 
p < 0.0001) with reduced LSC burden, as shown in secondary transplants (42 vs. 30 days, p < 0.0001). Mechanistically, 
AOH disrupted mitochondrial PCNA’s binding to the OPA1 protein, enhancing OPA1’s interaction with its E3 ligase, 
MARCH5, which led to OPA1 degradation. This process reduced mitochondrial length, fatty acid oxidation (FAO), 
and oxidative phosphorylation (OXPHOS), thereby inhibiting LSC expansion. The addition of venetoclax (VEN), an 
FDA-approved Bcl-2 inhibitor, further enhanced AOH’s effects, reducing mitochondrial length, FAO, and OXPHOS 
while improving survival in AML models. While VEN is approved for AML, AOH is under clinical investigation for 
solid tumors, and our findings support its broader therapeutic potential.
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To the Editor,
Proliferating cell nuclear antigen (PCNA) is involved in 
tumor DNA synthesis and repair, and disease progres-
sion [1, 2]. In contrast to its nuclear role, cytoplasmic 
PCNA maintains mitochondrial DNA integrity, regulates 
mitochondrial dynamics (such as fission and fusion), and 
mediates cellular stress responses by supporting mito-
chondrial function under stress conditions [3, 4]. In acute 
myeloid leukemia (AML), cytoplasmic PCNA is highly 
expressed, supporting oxidative metabolism and growth, 
especially in leukemia stem cells (LSCs) [5]. LSCs report-
edly rely on mitochondrial fusion, fatty acid oxidation 
(FAO), and oxidative phosphorylation (OXPHOS) for 
survival [6, 7]. Therefore, targeting cytoplasmic PCNA 
could disrupt LSC homeostasis, leading to their elimi-
nation and potential disease eradication. Building on 
the previous PCNA inhibitor AOH1160, we developed 
a leading clinical candidate AOH1996, which is orally 
administrable and metabolically stable and showed sig-
nificant inhibition of tumor growth with minimal toxicity 
for healthy cells [8, 9].

AOH treatment, significantly inhibited proliferation, 
colony formation, and induced apoptosis at 24  h in a 
dose-dependent manner, in seven representative AML 
cell lines and primary CD34 + CD38- blasts (enriched 
for LSCs), while sparing normal CD34 + CD38- mono-
nuclear cells (MNCs) [enriched for hematopoietic stem 
cells (HSCs)] (Fig. 1A-B and Sup. Figure S1). Untargeted 
metabolomic analysis identified 198 and 213 differentially 
abundant metabolites in AOH-treated (0.5 µM) primary 
CD34 + AML cells versus DMSO-treated or untreated 
controls (Adj. p < 0.05, Sup. Figure S2A and Sup. Table 
S1). To this end, AOH treatment led to reduced NAD+, 
FAD, and ATP levels, indicating decreased OXPHOS. 
Additionally, phospholipids, long-chain fatty acids, 

and acyl carnitines increased, while acetyl carnitine 
decreased, suggesting increased phospholipid synthe-
sis and reduced FAO (Fig.  1C and Sup. Table S1) [10, 
11]. Utilizing Seahorse and FAO functional assays, we 
confirmed that AOH treatment decreased FAO and 
OXPHOS (lower OCR) in CD34 + CD38- AML blasts 
(Fig.  1D and Sup. Figure S2B). Transmission electron 
microscope revealed AOH (1 µM) significantly reduced 
mitochondrial length (Fig.  1E-F), suggesting a poten-
tial inhibition of mitofusion. AOH treatment for 24  h 
also reduced levels of mitofusion-regulated proteins 
(e.g., OPA1, MFN1) and FAO/OXPHOS-regulated pro-
teins (e.g., BCL-2, CPT1B, NRF2) in HL-60 cells and 
CD34 + CD38- AML blasts (Fig. 1G and Sup. Figure S3A). 
PCNA contains an AlkB homolog 2 PCNA-interacting 
motif (APIM), which binds to OPA1. Treatment with 
AOH disrupted the APIM -mediated OPA1- mitochon-
drial PCNA binding (Sup. Figure S3B-C), which led to 
increased OPA1 binding to its E3 ligase, MARCH5, and 
ubiquitination and accelerates degradation of this pro-
tein (Fig. 1H-J and Sup. Figure S3D). Thus, these results 
suggest that AOH inhibits mitofusion and mitochondrial 
oxidative metabolisms in LSC-enriched blast subpopula-
tion by targeting cytoplasmic PCNA [5].

In vivo, we demonstrated a significant antileukemic 
activity of AOH in AML PDXs. Compared to vehicle-
treated mice, PDX mice receiving AOH (100 mg/kg, BID, 
3 weeks) showed reduced leukemia burden (percent-
age of hCD45 + in peripheral blood and spleen size) and 
extended median survival (CON: 35 days vs. AOH: 50 
days) (Fig.  1K-L). Analysis of human CD34 + cells from 
the bone marrow of treated mice, showed decreased 
FAO/OXPHOS levels (Fig.  1L, left). The antileukemic 
effect decreased LSC burden, as evidenced by the longer 
survival of recipients of BM MNCs from AOH-treated 
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Fig. 1 (See legend on next page.)
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donors compared with recipients of BM MNCs from 
vehicle-treated donors in subsequent transplants (CON: 
30 days vs. AOH: 42 days) (Fig.  1L, right bottom). Of 
note, AOH in combination with a BCL-2 inhibitor, 
venetoclax (VEN), resulted in a synergistic activity in 
vitro, as shown by inhibition of FAO/OXPHOS, reduc-
tion in mitochondria length, and increased apoptosis 
of CD34 + CD38- AML blasts (Fig.  2A-E). The AOH/
VEN combination significantly extended survival in 
both primary and secondary transplant experiments in 
murine (MllPTD/WT/Flt3ITD/ITD) [12] models compared 
to either agent alone. Primary survival (days): CON: 34, 
VEN: 34, AOH: 43.5, AOH/VEN: 54; secondary survival 

(days): CON: 28, VEN: 32.5, AOH: 41, AOH/VEN: 49.5 
(Fig.  2F-G and Sup. Figure S4A-B). Similar results were 
seen in PDX AML models (Fig. 2H-I). Notably, the drug 
treatment did not affect mouse weight (Sup. Figure S4C).

In summary, AOH exhibits potent antileukemic activ-
ity in AML models by inhibiting mitochondrial PCNA-
regulated dynamics and metabolism and reducing LSC 
burden. Of note, we also observed enhanced activity 
when AOH is combined with VEN. While VEN is FDA-
approved for AML, AOH is a novel compound currently 
in clinical trials for solid tumors and undergoing IND-
enabling studies for leukemia.

(See figure on previous page.)
Fig. 1  Impact of AOH1996 (AOH) on leukemic stem cells and leukemogenesis via inhibition of mitofusion and mitochondrial metabolism. A Effects of 
AOH (1 µM) on proliferation and apoptosis of LSC-enriched AML blasts. CD34 + CD38- cells were isolated from primary MNCs (n = 4) or AML blasts (n = 4). 
Top, cell proliferation levels. Bottom, apoptosis levels. B Effects of AOH on colony formation of LSC-enriched AML blasts. CD34 + CD38- AML blasts (top) or 
MNCs (bottom) (2 × 10⁵ cells/mL, n = 3) were treated with DMSO control (CON) or indicated doses of AOH for 24 h, then plated in methylcellulose. After 14 
days, colonies were imaged using a light microscope and counted. Data are shown as mean ± SE, with triplicate determinations. C Unsupervised hierarchi-
cal clustering of significantly different (adj. p < 0.05) metabolites from primary CD34 + AML blasts treated with AOH (0.5 µM), DMSO or Non-treat controls 
for 24 h. Metabolite changes were displayed as a heat map. D-F Primary CD34 + CD38- AML blasts were treated with VEH or AOH (1 µM) for 24 h. D Effects 
of AOH on FAO (measured by ³H-palmitate levels, top) and OXPHOS (indicated by OCR levels, bottom), with the OCR comparison focused on maximal 
respiratory capacity. E Transmission electron microscopy (TEM) imaging of mitochondria. Enlarged images are shown. Scale bar, 1 μm. F Quantification 
of mitochondrial length (n = 30). Asterisks indicate statistically significant differences based on unpaired t-test analysis. G-J AOH effects on mitochondrial 
PCNA’s interaction with OPA1 and its impact on OPA1 stability in CD34 + CD38- AML blasts treated with VEH or AOH (1 µM) for 24 h. G Immunoblot analy-
sis of mitofusion-regulated and mitochondrial metabolism-regulated proteins. H Mitochondrial fractions from treated cells were immunoprecipitated 
with anti-PCNA and immunoblotted with anti-OPA1 antibodies. Input loading controls are shown. I Cells were treated with cycloheximide, a translation 
inhibitor, (CHX, 10 µM), to assess protein stability, for indicated times, and lysates were immunoblotted with anti-OPA1 antibodies. J Left, lysates were 
immunoprecipitated with anti-OPA1 and immunoblotted with anti-MARCH5 antibodies. Input loading controls are shown. Right, ubiquitination assay 
with lysates immunoprecipitated with anti-OPA1 and immunoblotted with anti-Ub antibodies. K-L Antileukemic activities of AOH in vivo. Human primary 
AML blasts (1.0 × 10⁶) were injected intravenously into Es1(ko) SCID mice. After 7 days, mice were treated with vehicle control or AOH (100 mg/kg, BID, 
oral gavage, 3 weeks). K Leukemia burden at day 17 post-transplant, measured by the percentage of human CD45 + cells (left) and spleen size (right). L 
Left, effects of AOH treatment in vivo on FAO/OXPHOS in human CD45 + cells isolated from treated mice. FAO (top) and OXPHOS (bottom, indicated by 
OCR) levels were measured. Right, top Kaplan–Meier survival curve of primary transplanted leukemic mice treated with CON (black line, n = 10) and AOH-
treated mice (red line, n = 10). Median survival (MS): 35 days (CON), 50 days (AOH). Right, bottom, Kaplan–Meier survival curve of secondary transplanted 
leukemic mice treated with CON (black line, n = 10) and AOH-treated mice (red line, n = 10). MS: 30 days (CON), 42 days (AOH). Statistical significance 
determined by Log-rank (Mantel–Cox) test (p < 0.0001)
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Fig. 2 (See legend on next page.)
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