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AOH1996 targets mitochondrial dynamics @
and metabolism in leukemic stem cells via
mitochondrial PCNA inhibition
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Abstract

Cytoplasmic proliferating cell nuclear antigen (PCNA) is highly expressed in acute myeloid leukemia (AML) cells,
supporting oxidative metabolism and leukemia stem cell (LSC) growth. We report on AOH1996 (AOH), an oral
compound targeting cancer-associated PCNA, which shows significant antileukemic activity. AOH inhibited growth
in AML cell lines and primary CD34+CD38—blasts (LSC-enriched) in vitro while sparing normal hematopoietic
stem cells (HSCs). In vivo, AOH-treated mice demonstrated prolonged survival compared to controls (50 vs. 35 days;
p<0.0001) with reduced LSC burden, as shown in secondary transplants (42 vs. 30 days, p<0.0001). Mechanistically,
AOH disrupted mitochondrial PCNA's binding to the OPAT protein, enhancing OPA1’s interaction with its E3 ligase,
MARCHS5, which led to OPAT degradation. This process reduced mitochondrial length, fatty acid oxidation (FAQ),
and oxidative phosphorylation (OXPHOS), thereby inhibiting LSC expansion. The addition of venetoclax (VEN), an
FDA-approved Bcl-2 inhibitor, further enhanced AOH's effects, reducing mitochondrial length, FAO, and OXPHOS
while improving survival in AML models. While VEN is approved for AML, AOH is under clinical investigation for
solid tumors, and our findings support its broader therapeutic potential.
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To the Editor,

Proliferating cell nuclear antigen (PCNA) is involved in
tumor DNA synthesis and repair, and disease progres-
sion [1, 2]. In contrast to its nuclear role, cytoplasmic
PCNA maintains mitochondrial DNA integrity, regulates
mitochondrial dynamics (such as fission and fusion), and
mediates cellular stress responses by supporting mito-
chondrial function under stress conditions [3, 4]. In acute
myeloid leukemia (AML), cytoplasmic PCNA is highly
expressed, supporting oxidative metabolism and growth,
especially in leukemia stem cells (LSCs) [5]. LSCs report-
edly rely on mitochondrial fusion, fatty acid oxidation
(FAO), and oxidative phosphorylation (OXPHOS) for
survival [6, 7]. Therefore, targeting cytoplasmic PCNA
could disrupt LSC homeostasis, leading to their elimi-
nation and potential disease eradication. Building on
the previous PCNA inhibitor AOH1160, we developed
a leading clinical candidate AOH1996, which is orally
administrable and metabolically stable and showed sig-
nificant inhibition of tumor growth with minimal toxicity
for healthy cells [8, 9].

AOH treatment, significantly inhibited proliferation,
colony formation, and induced apoptosis at 24 h in a
dose-dependent manner, in seven representative AML
cell lines and primary CD34+CD38- blasts (enriched
for LSCs), while sparing normal CD34+CD38- mono-
nuclear cells (MNCs) [enriched for hematopoietic stem
cells (HSCs)] (Fig. 1A-B and Sup. Figure S1). Untargeted
metabolomic analysis identified 198 and 213 differentially
abundant metabolites in AOH-treated (0.5 uM) primary
CD34+AML cells versus DMSO-treated or untreated
controls (Adj. p<0.05, Sup. Figure S2A and Sup. Table
S1). To this end, AOH treatment led to reduced NAD+,
FAD, and ATP levels, indicating decreased OXPHOS.
Additionally, phospholipids, long-chain fatty acids,
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and acyl carnitines increased, while acetyl carnitine
decreased, suggesting increased phospholipid synthe-
sis and reduced FAO (Fig. 1C and Sup. Table S1) [10,
11]. Utilizing Seahorse and FAO functional assays, we
confirmed that AOH treatment decreased FAO and
OXPHOS (lower OCR) in CD34+CD38- AML blasts
(Fig. 1D and Sup. Figure S2B). Transmission electron
microscope revealed AOH (1 uM) significantly reduced
mitochondrial length (Fig. 1E-F), suggesting a poten-
tial inhibition of mitofusion. AOH treatment for 24 h
also reduced levels of mitofusion-regulated proteins
(e.g., OPA1, MFN1) and FAO/OXPHOS-regulated pro-
teins (e.g., BCL-2, CPT1B, NRF2) in HL-60 cells and
CD34+CD38- AML blasts (Fig. 1G and Sup. Figure S3A).
PCNA contains an AlkB homolog 2 PCNA-interacting
motif (APIM), which binds to OPA1l. Treatment with
AOH disrupted the APIM -mediated OPA1- mitochon-
drial PCNA binding (Sup. Figure S3B-C), which led to
increased OPA1 binding to its E3 ligase, MARCHS5, and
ubiquitination and accelerates degradation of this pro-
tein (Fig. 1H-J and Sup. Figure S3D). Thus, these results
suggest that AOH inhibits mitofusion and mitochondrial
oxidative metabolisms in LSC-enriched blast subpopula-
tion by targeting cytoplasmic PCNA [5].

In vivo, we demonstrated a significant antileukemic
activity of AOH in AML PDXs. Compared to vehicle-
treated mice, PDX mice receiving AOH (100 mg/kg, BID,
3 weeks) showed reduced leukemia burden (percent-
age of hCD45+in peripheral blood and spleen size) and
extended median survival (CON: 35 days vs. AOH: 50
days) (Fig. 1K-L). Analysis of human CD34+cells from
the bone marrow of treated mice, showed decreased
FAO/OXPHOS levels (Fig. 1L, left). The antileukemic
effect decreased LSC burden, as evidenced by the longer
survival of recipients of BM MNCs from AOH-treated
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Fig. 1 Impact of AOH1996 (AOH) on leukemic stem cells and leukemogenesis via inhibition of mitofusion and mitochondrial metabolism. A Effects of
AOH (1 uM) on proliferation and apoptosis of LSC-enriched AML blasts. CD34 + CD38- cells were isolated from primary MNCs (n=4) or AML blasts (n=4).
Top, cell proliferation levels. Bottom, apoptosis levels. B Effects of AOH on colony formation of LSC-enriched AML blasts. CD34 +CD38- AML blasts (top) or
MNCs (bottom) (2 x 10° cells/mL, n=3) were treated with DMSO control (CON) or indicated doses of AOH for 24 h, then plated in methylcellulose. After 14
days, colonies were imaged using a light microscope and counted. Data are shown as mean + SE, with triplicate determinations. C Unsupervised hierarchi-
cal clustering of significantly different (adj. p < 0.05) metabolites from primary CD34 + AML blasts treated with AOH (0.5 uM), DMSO or Non-treat controls
for 24 h. Metabolite changes were displayed as a heat map. D-F Primary CD34 + CD38- AML blasts were treated with VEH or AOH (1 uM) for 24 h. D Effects
of AOH on FAO (measured by *H-palmitate levels, top) and OXPHOS (indicated by OCR levels, bottom), with the OCR comparison focused on maximal
respiratory capacity. E Transmission electron microscopy (TEM) imaging of mitochondria. Enlarged images are shown. Scale bar, 1 um. F Quantification
of mitochondrial length (n=30). Asterisks indicate statistically significant differences based on unpaired t-test analysis. G-J AOH effects on mitochondrial
PCNA's interaction with OPA1 and its impact on OPAT stability in CD34+CD38- AML blasts treated with VEH or AOH (1 puM) for 24 h. G Immunoblot analy-
sis of mitofusion-regulated and mitochondrial metabolism-regulated proteins. H Mitochondrial fractions from treated cells were immunoprecipitated
with anti-PCNA and immunoblotted with anti-OPA1 antibodies. Input loading controls are shown. I Cells were treated with cycloheximide, a translation
inhibitor, (CHX, 10 uM), to assess protein stability, for indicated times, and lysates were immunoblotted with anti-OPA1 antibodies. J Left, lysates were
immunoprecipitated with anti-OPA1 and immunoblotted with anti-MARCHS5 antibodies. Input loading controls are shown. Right, ubiquitination assay
with lysates immunoprecipitated with anti-OPAT and immunoblotted with anti-Ub antibodies. K-L Antileukemic activities of AOH in vivo. Human primary
AML blasts (1.0x 10° were injected intravenously into Es1(ko) SCID mice. After 7 days, mice were treated with vehicle control or AOH (100 mg/kg, BID,
oral gavage, 3 weeks). K Leukemia burden at day 17 post-transplant, measured by the percentage of human CD45 + cells (left) and spleen size (right). L
Left, effects of AOH treatment in vivo on FAO/OXPHOS in human CD45 + cells isolated from treated mice. FAO (top) and OXPHOS (bottom, indicated by
OCR) levels were measured. Right, top Kaplan—-Meier survival curve of primary transplanted leukemic mice treated with CON (black line, n=10) and AOH-
treated mice (red line, n=10). Median survival (MS): 35 days (CON), 50 days (AOH). Right, bottom, Kaplan—Meier survival curve of secondary transplanted
leukemic mice treated with CON (black line, n=10) and AOH-treated mice (red line, n=10). MS: 30 days (CON), 42 days (AOH). Statistical significance
determined by Log-rank (Mantel-Cox) test (p <0.0001)

donors compared with recipients of BM MNCs from
vehicle-treated donors in subsequent transplants (CON:
30 days vs. AOH: 42 days) (Fig. 1L, right bottom). Of
note, AOH in combination with a BCL-2 inhibitor,
venetoclax (VEN), resulted in a synergistic activity in
vitro, as shown by inhibition of FAO/OXPHOS, reduc-
tion in mitochondria length, and increased apoptosis
of CD34+CD38- AML blasts (Fig. 2A-E). The AOH/
VEN combination significantly extended survival in
both primary and secondary transplant experiments in
murine (MIUPTP/WT/F[t31TPITD) 119] models compared
to either agent alone. Primary survival (days): CON: 34,
VEN: 34, AOH: 43.5, AOH/VEN: 54; secondary survival

(days): CON: 28, VEN: 32.5, AOH: 41, AOH/VEN: 49.5
(Fig. 2F-G and Sup. Figure S4A-B). Similar results were
seen in PDX AML models (Fig. 2H-I). Notably, the drug
treatment did not affect mouse weight (Sup. Figure S4C).

In summary, AOH exhibits potent antileukemic activ-
ity in AML models by inhibiting mitochondrial PCNA-
regulated dynamics and metabolism and reducing LSC
burden. Of note, we also observed enhanced activity
when AOH is combined with VEN. While VEN is FDA-
approved for AML, AOH is a novel compound currently
in clinical trials for solid tumors and undergoing IND-
enabling studies for leukemia.
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Fig.2 Synergistic effects of AOH and VEN in vitro and in vivo. A Synergistic effect of AOH and VEN on LSC-enriched AML blasts. Two primary CD34 +CD38-
AML samples were used: AML sample-1 (corresponding to AML-2 in Table S2) and AML-sample 2 (corresponding to AML-3 in Table S2). Cells (1x 10° cells/
mL, n=3) were treated with indicated concentration of AOH and VEN. Levels of cell proliferation were evaluated and synergy score of the drug combi-
nation was calculated. Maximum synergy scores were 26.32 for AML sample-1 and 22.98 for AML sample-2. B-D Combinatorial effects of AOH and VEN
on FAO/OXPHOS levels and mitochondrial length of LSC-enriched AML blasts. Primary CD34 4 CD38- AML blasts (n=4) were treated with DMSO (CON),
AOH (1 uM), VEN (20 nM), or combination of AOH and VEN for 24 h. B FAO levels. C OXPHOS levels (indicated by OCR), with OCR comparisons focused
on maximal respiratory capacity. D Mitochondria length. Left, represented TEM images. Right, quantification of mitochondria length (n=30). E Primary
CD34+CD38- AML blasts (n=4) were treated with DMSO (CON), VEN (20 nM), AOH (1 uM), or combination of AOH and VEN for 24 h. Top, DNA fragmenta-
tion. Bottom, PARP cleavage. ANOVA test was performed for multiple group comparisons prior to statistical analysis of each two group comparisons. F-G
Combinatorial effects of AOH and VEN on MIIFTPWT/F1:3T2/T0 AML mouse model. Kaplan-Meier curve employing log-rank test was used to find statistical
significance. F Experimental design for AOH and VEN combined treatment. 1x 10° MIIPTPVT/FIt3T5/T0 BM MNCs were intravenously injected into normal
Ceslc(ko) B6 WT recipients. The transplanted mice were then randomly divided into 4 groups 7 days post-transplant (n=10/group) and treated with
either vehicle (CON), AOH (100 mg/kg, BID, PO, 21 days), VEN (100 mg/kg, daily, PO, 21 days) or AOH/VEN at the same doses of single agents. On day 28
post-transplant, 10% BM MNCs cells from each treatment group were harvested for secondary transplant. G Left, Kaplan-Meier survival curve of primary
transplanted leukemic mice treated with CON (black line, MS 34 days), VEN (blue line, MS 34 days), AOH (red line, MS 43.5 days), or AOH/VEN (purple line,
MS 54 days). Right, Kaplan—-Meier survival curve of secondary transplanted leukemic mice treated with CON (black line, MS 28 days), VEN (blue line, MS
32.5 days), AOH (red line, MS 41 days), or AOH/VEN (purple line, MS 49.5 days). H-I Combinatorial effects of AOH and VEN on FLT3-WT PDX AML model.
H Experimental design for AOH and VEN combined treatment. hCD45 + BM FLT3-WT AML cells (1 x 10° cells/mouse) were transplanted into Es1(ko) SCID
mice to generate a cohort of AML bearing PDX mice. The transplanted mice were then randomly divided into 4 groups 7 days post-transplant (n=10/
group) and treated with either vehicle (CON), AOH (100 mg/kg, BID, PO, 21 days), VEN (100 mg/kg, daily, PO, 21 days) or AOH/VEN at the same doses of
single agents. On day 28, 10° BM MNCs cells from each treatment group were harvested for secondary transplant. I Left, Kaplan-Meier survival curve of
primary transplanted leukemic mice treated with CON [black line, median survival (MS) 41 days], VEN (blue line, MS 48 days), AOH (red line, MS 55 days),
or AOH/VEN (purple line, MS 75.5 days). Right, Kaplan-Meier survival curve of secondary transplanted leukemic mice treated with CON (black line, MS 40
days), VEN (blue line, MS 51 days), AOH (red line, MS 60 days), or AOH/VEN (purple line, MS 76 days)
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